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Analysis of a shear-lag model with nonlinear

elastic stress transfer for sequential cracking

of polymer coatings

U. A. HANDGE
Institute of Polymers, Department of Materials, ETH Zürich, ML J 16, 8092 Zürich, Switzerland

Analyzing a shear-lag model, the evolution of the fragment size distribution in the
sequential cracking of polymer coatings under uniaxial loading is investigated. This study
elucidates the role of a nonlinear elastic stress transfer mechanism at the interface on the
fragmentation kinetics. Using a nonlinear expression for the shear stress at the interface,
analytical expressions for the stress and the strain in the coating are derived. In the initial
stage of cracking, the strain in a fragment equals the substrate’s strain everywhere except
in the exclusion zone at the fragments’ edges. In the later stages of fragmentation, the
stress and the strain in a fragment attain a universal scaling form with pronounced maxima
in the centers of the fragments. Assuming a three parameter Weibull distribution for the
statistical distribution of the coating’s strength, analytical expressions for the fragment size
distribution in the initial stage and numerical results for the fragment size distribution in the
later stages of the cracking process are derived. C© 2002 Kluwer Academic Publishers

1. Introduction
The sequential cracking of coatings and surface layers
is a phenomenon that appears in a wide range of length
scales. Examples are the fragmentation of thin brittle
coatings and paint layers [1–10], the cracking of mud
during drying [11] and the fragmentation phenomena in
geological systems [12]. In general, the multiple break-
ing of a coating results in a pattern of cracks with an
irregular crack spacing. These patterns often consist of
polygons and can be characterized by the distribution of
the fragment size being a function of time (e.g., in desic-
cation processes) or applied strain (e.g., in mechanical
tests). This distribution of crack spacings reveals that
the coating is a disordered system. The disorder can
arise from the distribution of defects in the material
which are created during preparation of the composite
and which promote cracking, spatially varying coating
thickness [13], the presence of fillers in the coating etc..
Because of the inhomogeneous structure of the coating,
the local strength of the coating is a random quantity,
and failure is associated both with the value of the lo-
cal stress and strain in the coating and the value of the
local strength. In general, the distribution of the local
strength of the coating is a priori unknown [14, 15], and
assumptions must be made for the failure probability.
In this context, the weakest link approach has become a
popular model for the description of failure of materials
[16–18].

The values of the local stress and strain in the coating
are determined by the specific behaviour of the materi-
als of the coating and the substrate and of the interface
under deformation, i.e., the character of deformation

(e.g., elastic, plastic or hysteretic) and their stress–strain
relation. Materials under deformation depict different
kinds of behaviour ranging from linear elastic to highly
nonlinear plastic behaviour as well as viscoelastic or
hysteretic response. For example, polymers and thus
polymer coatings often show a nonlinear response to
deformation. Moreover the stress transfer at the inter-
face plays a key role for the sequential breaking of coat-
ings. Since the fragmentation kinetics are strongly in-
fluenced by the parameters which describe the material
properties, the interfacial properties and the scattering
of the local strength, the fragmentation test performed
with coatings and fibres embedded in a matrix has be-
come a tool for characterizing the properties of the
coating-substrate and fibre-matrix system respectively
[19]. In this paper, the fragmentation of polymer coat-
ings that adhere to a substrate is investigated by con-
sidering a one-dimensional shear-lag model. We focus
on the kinetics of fragmentation, i.e., the evolution of
the fragment size distribution with the applied strain. In
this study we assume that coating, substrate and inter-
face display elastic response to deformation and thus
have a reversible stress–strain relation. It is the aim
of this paper to elucidate the role of nonlinear elastic
stress transfer at the interface on the fragment size dis-
tribution. We clarify the interplay between nonlinearity
and disorder by showing that the scaling exponents in
the fragmentation kinetics are simple functions of the
disorder and nonlinearity parameters of the coating-
substrate system. Starting from a shear-lag model, ana-
lytical and numerical results are presented which can be
compared with experimental data. One can infer from

0022–2461 C© 2002 Kluwer Academic Publishers 4775



such a comparison information about the distribution
of the coating’s strength and the mechanical proper-
ties of the interface. Therefore the fragmentation test
is an adequate tool in order to characterize polymer
coatings.

The paper is organized as follows: First the model
for the fragmentation of polymer coatings is presented
and the stress and the strain within a fragment is calcu-
lated. Then the sequential cracking of the coating using
a three parameter Weibull distribution for the coating’s
strength in the initial and in the later stages of frag-
mentation is investigated. We focus on the evolution of
the fragment size distribution with the applied strain
and discuss the influence of the disorder and material
parameters on the fragmentation kinetics. We conclude
the paper with a summary of results.

2. The model
If the substrate is loaded uniaxially, stress is transferred
from the substrate to the surface layer, and a tensile
stress arises in the coating. This tensile stress may cause
cracking of the coating. Generally, cracks grow per-
pendicular to the stress direction so that under uniaxial
loading the cracks separate the coating into nearly rect-
angular independent fragments. The maximum of the
stress and the strain in each fragment increases with the
applied strain. Consequently, the continuous stretching
of the substrate leads to multiple cracking and frag-
mentation of the coating. Since randomly distributed
defects, e.g., microcracks, flaws and pores which occur
during the manufacturing process, promote the break-
ing of the coating, the fragment lengths, i.e., the dis-
tances between neighbouring cracks, are statistically
distributed as well. In this study, the evolution of the
fragment length distribution with the applied strain is
investigated. We assume that the substrate is elongated
uniformly. Thus the substrate’s strain is equal to the ap-
plied macroscopic strain. In an experimental situation,
more material-specific features may complicate the sit-
uation, for example partial debonding of the fragments
from the substrate, substrate yielding and non-uniform
substrate deformation. In this article, these aspects are
neglected as well as intrinsic stresses which may occur
during the preparation of the coating.

The fact that the fragments are independent and the
assumption of uniform substrate deformation allows
calculation of the stress and strain in each fragment in-
dependently. Fig. 1 schematically depicts a fragment
of length L and of thickness hc that adheres to a sub-
strate. The loading direction is parallel to the x axis.
We assume that the tensile stress σ of the coating does
not vary with the thickness of the coating and that the
coating material is linear elastic with Hooke’s constant
Ec. Thus σ = Ecεc holds where εc(x) denotes the local
strain in the coating. The substrate is uniformly elon-
gated so that the substrate’s strain εs(x) does not vary
with x and equals the applied strain ε: εs(x) ≡ ε. In
a quasistatic situation, the forces acting on each coat-
ing element are in equilibrium and hence in a shear-lag
picture [20] [σ (x + dx) − σ (x)]hc = τ (x) dx holds for
each coating element of length dx , where τ (x) denotes

Figure 1 A fragment of length L that adheres to a substrate. The thick-
ness of the coating is denoted by hc . The substrate’s strain is ε. The
variable σ denotes the tensile stress in the coating, and τ (x) is the shear
stress at the interface. The loading direction is parallel to the x axis.

the interfacial shear stress at position x . This yields

dσ

dx
= τ

hc
(1)

In order to calculate the stress and the strain in the coat-
ing it is necessary to specify the stress–strain relation
for the shear stress τ at the interface. In this study the in-
fluence of a nonlinear elastic stress–strain relation for
the interfacial shear stress is analyzed in detail. This
stress–strain relation is given by [21]

τ (w) =


sgn(w)C for m = 0
Gw for m = 1
BG[w/B + sgn(w)|w/B|m] for m > 1 (2)

w(τ ) =
τ/G + sgn(τ )B|τ/(BG)|1/m for 0 < m < 1,

where B, C and G are positive parameters and w is
equal to the difference of the displacement uc(x) in the
coating and the displacement us(x) = εx in the sub-
strate: w(x) = uc(x) − εx . The parameter m plays the
role of a nonlinearity parameter and strongly influ-
ences the shape of the stress–strain relation. Because
of the nonlinear character of Equation 2, in this study
the linear shear-lag model introduced by Cox [20] is
generalized for nonlinear stress transfer. The stress–
strain relation Equation 2 describes the stress transfer
at the interface. The formal structure of Equation 2
is related to the Taylor expansion of functions. For
small w, i.e., |w| � B and m > 0, the stress–strain re-
lation can be approximated by a linear relation be-
tween stress and strain (Hooke’s law). For very large
w (|w| 	 B) and m > 0, the power function term in
Equation 2 dominates. For m = 0 the interfacial stress is
constant, an assumption being made in previous studies
on fragmentation of coatings and fibres [22–24]. Fig. 2
shows the dependence of τ on w for different m val-
ues: For m = 0 the interfacial stress is constant. The
case m = 1 corresponds to Hooke’s law (linear elastic
stress transfer). For m > 1 the stress–strain relation has
an increasing secant modulus, whereas for 0 < m < 1
Equation 2 approximates the elastic part of the stress–
strain curve for materials which have a yield point.
Consequently, the stress–strain relation Equation 2 ap-
proximates the elastic response of a large class of
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Figure 2 The interfacial shear stress–strain relation τ (w) for several m
values. The parameters are B = 1, C = 2 and G = 1, cf. Equation 2.

materials. Note that a similar expression for the (ten-
sile) stress–strain relation of materials has been used
by Ramberg and Osgood [25].

The displacement uc(x) in the coating and the coat-
ing’s strain εc are related by εc = duc/dx . Inserting
σ = Ecεc = Ec duc/dx into Equation 1 yields

d2uc

dx2
= τ (uc − εx)

Echc
(3)

The edges of each fragment are free so that at the
boundaries of each fragment the stress and the strain
vanish: duc(x)/dx = 0 for |x | = L/2 with x = 0 be-
ing the fragment’s center. In the initial stage of frag-
mentation, the displacements uc(x) and us(x) do not
differ much. Therefore for m > 0 the stress–strain re-
lation Equation 2 can be approximated by Hooke’s
law τ = Gw. Then the solution of Equation 3 is
given by uc(x) = εx − εξ1 sinh (x/ξ1)/ cosh [L/(2ξ1)]
with ξ1 = √

Echc/G. The strain εc in the coating fol-
lows from εc = duc/dx :

εc(x) = ε

(
1 − cosh [x/ξ1]

cosh [L/(2ξ1)]

)
(4)

Note that for ξ1 	 L Equation 4 simplifies to a
parabola: εc(x) = εL2(1 − 4x2/L2)/(8ξ 2

1 ). For m = 0
Equation 3 yields dεc/dx = sgn(w)C/(Echc) and
hence

εc(x) ={
ε for |x | ≤ L/2 − ξ0

LC(1 − |2x/L|)/(2Echc) for |x | > L/2 − ξ0

(5)

with ξ0 = εEchc/C . Equation 5 also holds for ξ0 > L/2.
The stress σ (x) in the coating follows from σ (x) =
Ecεc(x) for all m values. Fig. 3 depicts the function
εc(x) for m = 0 and m = 1 and for two values of the
ratio ξ0/L and ξ1/L respectively. In Fig. 3 the applied
strain ε is set to 1%. The shape of the strain function
εc depends on the nonlinearity parameter m and a char-
acteristic length ξ (m) ≡ ξm which is often denoted by

Figure 3 The strain εc in a fragment of length L as a function of z = x/L
for m = 0 and m = 1 and two ξ (m)/L values, see also Equations 4 and
5. The value of ε is 1%.

exclusion zone, shield zone, stress transfer length, cor-
relation length or screening length [22, 26–32]. If ξ (m)
is much smaller than the length of the fragment (which
is typical for the initial stage of fragmentation), then
the strain function depicts a plateau with εc = ε. At the
boundaries, the strain εc in the coating decreases to zero,
for m = 0 linearly and for m = 1 exponentially. When
the correlation length ξ (m) is larger than the length of
the fragment, the displacements uc(x) of the fragments
are much smaller than the displacements us(x) of the
substrate so that uc − εx ≈ −εx holds. In addition for
|w| 	 B the power function term in the interfacial shear
stress–strain relation Equation 2 dominates. Thus in-
serting w ≈ −εx and τ (w) ∝ wm into Equation 3 leads
to dεc/dx = − G(εx)m/(Echc Bm−1) for x > 0 and

εc(x) = εm Lm+1gm(z) (6)

with gm(z)=G(1−|2z|m+1)/[2m+1(m +1)Echc Bm − 1]
and z = x/L [33, 34]. Equation 6 is valid for all m
values (0 ≤ m < ∞) and comprises the special cases
m = 0 (after substituting G/Bm−1 by C) and m = 1 for
ξ (m) 	 L , see Equations 5 and 4. The “form factor”
hm(z) = 1 − |2z|m+1 is displayed in Fig. 4. Note that
the stress σ (x) and the strain εc(x) are proportional to
hm(z), and the maximum of the stress and the strain in

Figure 4 The “form factor” hm (z) = 1 − |2z|m+1 with z = x/L for dif-
ferent m values. The strain εc(x) in a fragment of length L is proportional
to εm Lm+1hm (z).
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each fragment are proportional to Lm+1. The plateau
with εc ≡ ε in the middle of the fragment disappears for
ξ (m) 	 L and |w| 	 B, and the strain εc(x) displays
a noticeable maximum in the center of the fragment.
For m = 0 the strain εc(x) increases linearly from
the boundaries, and for m = 1 the shape of the strain
function is parabolic. For very large m values, the
function εc(x) depicts a plateau being proportional to
εm Lm+1.

3. Analysis of the fragmentation process
Since small defects such as microcracks and pores
cause a stress concentration if the sample is loaded,
the random distribution of defects in the coating gives
rise to a statistical distribution of the local strength of
the coating. Within this picture, failure can be modelled
by assuming that each element of the coating can only
withstand a fixed value of stress or strain which is sta-
tistically distributed and which is prescribed in the be-
ginning (quenched disorder). In this study, we assume
that a crack occurs at position x when the strain εc(x) in
the coating exceeds a local failure threshold εb(x). Be-
cause of the statistical distribution of the local strength,
a fragment does not necessarily fail at the position of
the strain maximum, but at the position where the lo-
cal strain εc(x) exceeds εb(x). Since the distribution of
defects is a priori unknown, it is necessary to make an
assumption for the strength distribution. The weakest
link approach assumes that the strength of materials is
determined by the strength of its weakest element (link).
Therefore the statistical aspects of failure phenomena
are strongly associated with the statistics of extremes.
In this context it has been shown that in the limit of a
large number of links the statistics of minima converges
to the Weibull distribution, if the strength distribution
has a bounded tail [35] and if the failure distributions of
all links are equal [36]. Following this idea we assume
that the cumulative probability distribution for the local
failure threshold εb(x) of a coating element of length
�x is given by a three parameter Weibull distribution:

Pε(εb) = 1 − exp

[
−�x

(
εb − εmin

ω

)α
]

(7)

for εb > εmin and Pε(εb) = 0 otherwise. Here εmin and
the scale parameter ω are positive and for the shape pa-
rameter α ≥ 1 holds. The corresponding strength dis-
tribution Pσ for a linear elastic coating with σ = Ecεc

is Pσ (σb) = 1−exp {−�x[(σb − σmin)/(Ecω)]α} where
we set σmin = Ecεmin. The behaviour of Pε(εb) for small
values of εb is essential for failure in large systems:
In this limit, Pε(εb) ∝ (εb − εmin)α holds. Thus the
Weibull function is intimately related to power func-
tions [37].

3.1. Initial stage of fragmentation
In section 2 the strain distribution in an arbitrary frag-
ment was obtained. In the following the initial and the
later stage of fragmentation are discussed. Neglecting
the exclusion zone close to the fragments’ boundaries,

the coating’s strain equals the applied strain in the ini-
tial stage of breaking: εc ≡ ε. Using this approximation,
one can derive the probability that a fragment of length
L fails under the applied macroscopic strain ε. We set
s = [(ε − εmin)/ω]α . If a coating element of length �x
has withstood the applied load s with ε > εmin, then it
fails under the applied load s∗ with the probability

P(�x, s∗|s) = 1 − exp[−(s∗ − s)�x] (8)

The probability P−(L , s∗|s) that a crack occurs
in a fragment of length L at the load s∗ under
the assumption that the whole fragment has with-
stood the applied load s follows from the probability
that each of the coating elements fails: P−(L , s∗|s) =
1 − ∏

i [1 − P(�xi , s∗|s)] = 1 − exp[−L(s∗ − s)] with∑
i �xi = L . Therefore the density p−(L , s) of the

probability that a fragment of length L fails under the
incremental increase ds of the load is

p−(L , s) = ∂ P−(L , s∗|s)

∂s∗

∣∣∣∣
s∗=s

= L (9)

if the fragment has survived the applied load s. If a
fragment has withstood the external load s, then a crack
occurs in the interval x to x + �x with the probability
P+(x, s∗|s). This probability is equal to the probabil-
ity that the coating element at position x fails times
the probability that the other elements of the fragment
stay intact: P+(x, s∗|s) = (1 − exp[ − (s∗ − s)�x])
exp[− ∫ x

0 (s∗ − s) dx − ∫ L
x + �x (s∗ − s) dx]. Expanding

the exponential term yields P+(x, s∗|s) = �x(s∗ − s)
exp[−L(s∗ − s)] for very small �x . The corresponding
density p+(x, L , s) of the probability that a fragment
of length L fails between x and x + �x after an incre-
mental load increase ds and after having withstood s is:

p+(x, L , s) �x = ∂ P+(x, s∗|s)

∂s∗

∣∣∣∣
s∗=s

= �x (10)

Because of the continuous elongation of the substrate
multiple cracks occur in the coating, and rectangular
fragments are formed. The pattern of cracks is charac-
terized by the distribution of the fragment lengths, i.e.,
the distances between neighbouring failures. During
fragmentation, existing fragments break up and new
fragments are created so that the fragment length
distribution is a function of the applied strain. The
evolution of the number density n(L , s) of fragments
with length L is determined by the breakup of existing
fragments of length L and the formation of new
fragments of length L by the breakup of fragments
which are larger than L . Since p−(L , s) denotes the
density of the probability that a fragment of length L
breaks and p+(L , x, s) is the density of the probability
that a fragment of length x breaks at position L within
the fragment, we find [38, 39]

∂n(L , s)

∂s
= −p−(L , s)n(L , s)

+ 2
∫ ∞

L
p+(L , x, s)n(x, s) dx (11)
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Here we assume that every breakage event is associ-
ated with one crack in each fragment only. The fragment
length distribution ρ(L , s) is obtained by normalising
the number density ρ(L , s) = n(L , s)/

∫ ∞
0 n(L , s) d L ,

and the average fragment length follows from
〈L〉 = ∫ ∞

0 L ρ(L , s) d L .
The initial length of the intact coating is denoted

by L0. Inserting the probability densities p−(L , s) and
p+(x, L , s) into the kinetic Equation 11 leads to an
evolution equation for the number density n(L , s) of
fragments:

∂n(L , s)

∂s
= −n(L , s)L + 2

∫ L0

L
n(x, s) dx (12)

Note that in Equation 12 the integration range only
extends to L0, since the initial length of the coating
is L0 and consequently there are no fragments that
are larger than L0. For ε ≤ εmin only the intact coat-
ing exists. Therefore the initial condition is given by
n(L , 0) = δ(L − L0). Then the solution of Equation 12
for ε > εmin is n(L , s) = [δ(L − L0) + 2s + s2(L0 −
L)] exp (−Ls) for 0 ≤ L ≤ L0 and n(L , s) ≡ 0 for
L > L0 [38]. Here δ(x) denotes Dirac’s delta function.
Normalising the function n(L , s), one finds for the frag-
ment size distribution ρ(L , s) in the range 0 ≤ L ≤ L0
and for ε > εmin

ρ(L , s) =
[
δ(L − L0) + 2s + s2(L0 − L)

]
exp(−Ls)

1 + L0s
(13)

The mean fragment length is given by 〈L〉 = L0/(1 +
L0s). The average number of cracks in the initial
stage (εc ≡ ε) is [L0 Pε(ε)]/�x ≈ L0s if one linearizes
the Weibull function in Equation 7 near εmin. For
L � L0 and a large number of cracks (L0s 	 1) one has
ρ(L , s) = s exp (−Ls). Therefore in the initial stage of
fragmentation, the fragment lengths are approximately
exponentially distributed. The average fragment length
is given by 〈L〉 = 1/s = [ω/(ε − εmin)]α . Consequently,
the mean fragment length 〈L〉 scales with the applied
strain in the initial stage of fragmentation:

〈L〉 ∝ (ε − εmin)−κ1 (14)

with κ1 = α. Note that for a linear elastic substrate
〈L〉 ∝ (σs − Esεmin)−α holds where σs = Esε is the
substrate’s stress and Es denotes the elasticity constant
of the substrate. These results for the special case
εmin = 0 have been already derived in [24, 40–44].
Interestingly, the scaling exponent κ1 only depends
on the disorder parameter α of the failure threshold
distribution Equation 7. Thus the evolution of 〈L〉 with
the applied strain ε in the initial cracking regime allows
determination of the lower bound εmin of the failure
threshold distribution and the Weibull parameters α

and ω.

3.2. Later stage of fragmentation
For ξ (m) 	 L and |w| 	 B (which is typical for the
later stages of the breaking process) the strain in the
coating attains a more complex form, see Equation 6. A

previous study [34] has shown that the approach for de-
riving the failure probability densities Equations 9 and
10 can be generalized for the special case εmin = 0 if
the strain attains the scaling form Equation 6 and under
the assumption that the fragment is loaded monotoni-
cally from 0 to s∗. After each breakage event in the later
cracking regime the stress and the strain in the fragment
that failed relaxes since the maxima of the stress and the
strain are proportional to Lm+1, see Equation 6. There-
fore the stress and the strain in a fragment strongly
decay if a crack occurs in the fragment and creates
two new fragments with smaller fragment lengths than
the length of the original fragment. Consequently, the
derivation of failure probabilities in the later cracking
stages must take into account the non-monotonic stress
and strain history of the fragments. If one neglects this
non-Markovian character of fragmentation, then the de-
rived probabilities only approximate the true failure
probabilities, and the kinetic Equation 11 itself only
approximates the evolution of the fragment size distri-
bution [34]. In this work a numerical approach which
takes into consideration the stress and strain history
of the fragments is applied to obtain the fragmenta-
tion length distribution. Since in [27] the authors have
shown that the fragment length distribution for εmin > 0
in the later cracking stages is non-universal and depends
on the distribution of cracks which were created in the
initial stage of fragmentation, in the following the dis-
tribution of the fragment sizes is considered only for
the case εmin = 0.

In order to simulate the sequential breaking of the
coating, the coating is divided into N links. In the be-
ginning, for each element of the coating a value of the
failure threshold εb is fixed based on the probability
distribution Equation 7. The strain in each fragment
and in the coating before the first failure can be cal-
culated using Equation 6. Because of the scaling form
of Equation 6 with respect to ε one can compute eas-
ily the first and the following links which break for the
chosen realization of the probability distribution Equa-
tion 7. Noting the broken links, one can determine the
fragment size distribution.

The results of the simulations of the fragmentation
process are presented in Figs 5 and 6. Fig. 5 displays
the fragment length distribution for εmin = 0 and (a)
m = 0.05, (b) m = 1 and (c) m = 9 in the later stage
of the fragmentation process. The Weibull shape pa-
rameter α is set to α = 5 and α = 9 respectively, and
the number N of links is N = 2 × 106. Moreover in the
simulations Echc Bm−1/G = 1012 was used. The frag-
ment size distribution after 10000 failures is plotted as
a function of ζ = L/〈L〉 and was obtained by averaging
over the results of 5 simulations based on the Weibull
distribution Equation 7. Previous works have shown
[21, 26–28, 34] that for εmin = 0 the rescaled fragment
length distribution p(ζ ) of the later cracking regime is
a function of m and α only and does not depend on
the applied strain ε anymore. The simulations reveal
that the fragment size distribution depicts a maximum
and is roughly centered around ζ = 1 corresponding to
L = 〈L〉. The maximum of p(ζ ) is more pronounced
with decreasing m. This behaviour can be explained by
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(a) (b)

(c)

Figure 5 The rescaled fragment length distribution p(ζ ) with ζ = L/〈L〉 in the later stage of the fragmentation process after 10000 breakage events
for εmin = 0, ω = 5 × 10−3, Echc Bm−1/G = 1012 as well as α = 5 and α = 9 respectively. The value of the nonlinearity parameter is (a) m = 0.05,
(b) m = 1 and (c) m = 9. For each set of parameters 5 simulations based on the Weibull distribution Equation 7 were run. The function p(ζ ) was
obtained by averaging over the results of these 5 runs.

Figure 6 The average fragment length 〈L〉 vs. applied strain ε in the
later cracking stages for the parameters (a) m = 0.8, εmin = 0, ω = 10−4,
α = 7, Echc Bm−1/G = 1012 and (b) m = 5, εmin = 1%, ω = 10−3, α = 1,
Echc Bm−1/G = 1016 in systems with N = 2 × 106 links. Each curve is
obtained by averaging the results of 10 simulations based on the proba-
bility distribution Equation 7. The slope of the solid line is −0.412, the
slope of the dashed line is −0.833, see text for details.

the shape of the strain distribution Equation 6. For low
m values, εc(x) has a noticeable maximum. For larger
m values the function εc(x) displays a plateau so that
the failure probability ceases to depend on x . Compar-
ing the fragment length distributions for a fixed m value
and different values of α in Figs 5a–c, the influence of

the shape parameter α on the fragment length distribu-
tion becomes obvious: Increasing the α value results in
a larger maximum of the fragment length distribution,
since increasing α also implies less scattering of εb.

Fig. 6 displays the average fragment length 〈L〉 as
a function of the applied strain ε for the parameters
(a) m = 0.8, εmin = 0, ω = 10−4, α = 7, Echc Bm−1/

G = 1012 and (b) m = 5, εmin = 1%, ω = 10−3, α = 1,
Echc Bm−1/G = 1016. The number of links is N = 2 ×
106. Each curve is obtained by averaging the results
of 10 simulations based on the probability distribution
Equation 7. Both curves clearly reveal that 〈L〉 scales
with ε [33, 45]:

〈L〉 ∝ ε−κ2 (15)

This scaling behaviour in the later stage of the crack-
ing process can be explained by considering the
characteristic length scale [33]: For each value of the
applied strain ε there exists a characteristic length Lc(ε)
so that fragments of length Lc(ε) stay intact with the
probability of 50%. This probability is given by

exp

{
−2

∫ Lc/2

xmin

[
εc(x) − εmin

ω

]α

dx

}
= 0.5 (16)

where xmin is defined by εm[Lc(ε)]m+1gm(xmin/L) =
εmin with xmin > 0. Inserting εc(x) = εm[Lc(ε)]m+1
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gm(z) (Equation 6) into Equation 16 yields Lc(ε) =
const · ε−mα/[(m+1)α+1] for εmin = 0. In this case the
value Lc(ε)(εmin/ω)α is zero which corresponds to a
strongly disordered situation [26–28, 33]. Assuming
that the mean fragment size 〈L〉 is proportional to Lc(ε),
we find the scaling relation 〈L〉 ∝ ε−κ2 with [33]

κ2 = mα/[(m + 1)α + 1] (17)

The case where the value of Lc(ε)(εmin/ω)α 	 1 is large
belongs to the so-called weak disorder situation [26–
28, 33]. Then the cracks occur close to the centers of the
fragments when εc(0) ≈ εmin holds. This implies for the
characteristic length εc(0) = εm[Lc(ε)]m+1gm(0) ≈ εmin
and thus 〈L〉 ∝ Lc(ε) ∝ ε−κ2 where

κ2 = m/(m + 1) (18)

holds [33]. Consequently, in weakly and in strongly dis-
ordered systems the average fragment length 〈L〉 also
scales with ε in the later cracking stages. In this regime,
the power law exponent depends on the nonlinearity
parameter m of the stress–strain relation Equation 2.
Since the scaling law exponent κ1 of the initial crack-
ing regime only depends on the shape parameter of the
Weibull distribution Equation 7 and the power law ex-
ponent κ2 on m, one can experimentally determine the
parameters of the Weibull function and the nonlinearity
parameter m from the evolution of the average fragment
length with the applied strain.

The simulations of the later cracking stages confirm
the scaling law Equation 15. A least-squares fit to the
curves in the ε range 1% to 100% in Fig. 6 lead to (a)
κ2 = 0.400 ± 0.001 being close to the theoretical value
of Equation 17 κ2 = 0.412. In Fig. 6b the numerical
result is κ2 = 0.836 ± 0.000 which has to be compared
with κ2 = 0.833, see Equation 18. In conclusion, the
simulation results agree very well with the analytical
results Equations 17 and 18.

4. Conclusions
In this study, the influence of a nonlinear elastic stress
transfer mechanism on the fragmentation of coatings
under uniaxial loading was investigated. Analyzing a
shear-lag model, the stress and the strain in the coating
as a function of the substrate’s strain were derived. In
the initial stage of fragmentation, the coating’s strain
equals the substrate’s strain everywhere beside the ex-
clusion zone at the fragments’ edges. In the later crack-
ing stages, the stress and the strain attain a universal
scaling form. The statistical distribution of the local
strength of the coating was taken into account by a
three parameter Weibull distribution for the local fail-
ure threshold of the coating’s strain. In the initial stage
of cracking, the fragments are approximately exponen-
tially distributed. The mean fragment length in the ini-
tial stage of cracking decays with a power law where the
power law exponent is equal to the Weibull shape pa-
rameter. In this initial regime, the evolution of the mean
fragment length with the applied strain allows determi-
nation of the parameters of the Weibull distribution.
The results of the simulations for the later fragmenta-
tion stages reveal that the fragment length distribution

displays a noticeable maximum for the parameter val-
ues chosen. The width of the rescaled fragment length
distribution increases with increasing values of the non-
linearity parameter of the interfacial shear stress–strain
relation. The average fragment length also scales with
the applied strain in the later stages of cracking. In this
regime, the scaling exponent depends on the nonlin-
earity parameter of the interfacial shear stress–strain
relation and the parameters of the strength distribution.
By combining the results of measurements of the initial
and the later cracking stages, one can determine experi-
mentally the parameters of the Weibull distribution and
the nonlinearity parameter. In conclusion, the analysis
of the fragmentation kinetics allows both the degree of
disorder in the coating and the mechanical properties
of the interface to be probed.
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